Загрузка...

Таблиці істинності у логіці. Реферат

Таблиця істинності кон'юнкції. Таблиця істинності нестрогої (слабкої) диз'юнкції. Таблиця істинності строгої (сильної) диз'юнкції. Таблиця істинності імплікації. Таблиця істинності еквіваленції. Таблиця істинності заперечення

Знаки логічних сполучників:

  • л - кон'юнкція (приблизно відповідає граматичному сполучнику "і");
  • v - нестрога (слабка) диз'юнкція (відповідає граматичному сполучнику "або");
  • у - строга (сильна) диз'юнкція (відповідає... - "або.., або...");
  • -" - імплікація (відповідає... - "якщо..., то...");
  • <-> - еквіваленція (відповідає... - "якщо і тільки якщо...";
  • заперечення (цей знак пишеться над висловлюванням, відповідає частці "не" і читається - "хибно, що...").

Технічні знаки:

  • (- ліва дужка;
  • ) - права дужка;
  • , - кома.

Перелічені знаки - знаки пропозиційних змінних, логічних сполучників і технічні знаки - становлять собою алфавіт логіки висловлювань, або пропозиційної логіки.

Що таке формула логіки висловлювань?

По-перше, будь-яка пропозиційна змінна є формулою логіки висловлювань.

По-друге, якщо F і F є формулами логіки висловлювань, то формулами будуть і "FAFJ", "FVFJ", "FyFj", "F-tFj" "F-t-Fj".

По-третє, якщо F є формулою логіки висловлювань, то F також буде формулою.

Послідовність знаків "Av", "wl", "vAv", "AB" не є формулами логіки висловлювань подібно до аналогічних виразів у математиці.

     

Щоб "перекласти" вираз природної мови на мову логіки висловлювань, необхідно:

  • 1) виділити всі прості речення природної мови;
  • 2) позначити їх знаками відповідних пропозиційних змінних;
  • 3) встановити граматичні сполучники, які мають місце в міркуванні і пов'язують прості речення природної мови у складні, при цьому прості речення з однорідними членами нерідко розглядають як складні. Наприклад: "Він поет і майстер живопису" (АлВ), тобто "Він поет, і він майстер живопису".
  • 4) позначити ці сполучники відповідними знаками (символами) логічних сполучників;
  • 5) записати вираз, що аналізується, з допомогою відповідних логічних знаків.

Наприклад: "Почалася сесія, і роботи додалося" - (АлВ); "Якщо чотирикутник має попарно паралельні сторони і прямі кути, то він є прямокутником" - (АлВ) С.

Логіка висловлювань дає можливість на підставі знання логічного значення (істинності чи хибності) простих висловлювань і таблиць істинності логічних зв'язок робити висновок про логічне значення складних висловлювань. Щоправда, існують випадки, коли істиннісне значення складних висловлювань залежить від таблиць істинності логічних зв'язок і зовсім не залежить від істинності чи хибності простих висловлювань.

Щоб навчитися визначати логічне значення складних висловлювань, розглянемо таблиці істинності логічних зв'язок, які, до речі, є вичерпною характеристикою цих зв'язок, яка не йде ні в яке порівняння з посиланням на їх аналогію з граматичними сполучниками.

Таблиця істинності кон'юнкції

А В АлВ

і і і

і X X

X і X

X X X

З таблиці видно, що кон'юнкція істинна лише тоді, коли всі кон'юнкти істинні (всі, а не два, бо їх може бути й більше). В усіх інших випадках кон'юнкція хибна. Так, кон'юнктивне судження "Всі ромби мають рівні сторони і взаємно перпендикулярні діагоналі" істинне, а судження "Всі ромби мають рівні сторони і кути" хибне.

Нестрога диз'юнкція є хибною лише тоді, коли всі диз'юнкти хибні. В усіх інших випадках вона є істинною.

Наприклад:

  • "Новий Лондон знаходиться в Австралії або в Канаді";
  • "О. С. Пушкін - поет або прозаїк";
  • "Гегель був філософом або фізиком".

Таблиця істинності нестрогої (слабкої) диз'юнкції

А В AvB

і і і

і X і

X і і

X X X

Перше диз'юнктивне висловлювання є хибним, оскільки обидва диз'юнкти (члени диз'юнкції) є хибними. Новий Лондон знаходиться не в Австралії і не в Канаді, а в двадцять другому штаті США — штаті Коннектикут.

Друге і третє висловлювання істинні, бо в другому висловлюванні обидва диз'юнкти є істинними, а в третьому - один, перший.

Таблиця істинності строгої (сильної) диз'юнкції

А В AvB

і X

і X і

X і і

X X X

Строга диз'юнкція є істинною тоді, коли один і лише один диз'юнкт є істинним. В іншому разі вона буде хибною.

Наприклад:

  • "Цей кут є або гострим, або прямим, або тупим";
  • "Цього літа ми поїдемо відпочивати або в Ялту, або в Скадовськ".

Перше висловлювання є істинним, бо будь-який кут неодмінно належить до одного і тільки одного з названих різновидів. А друге висловлювання може виявитися як істинним (за умови, що його автор відпочиватиме в зазначений час в одному і тільки в одному з названих міст), так і хибним (коли його автор відпочиватиме "цього літа" в обох названих містах або не відпочиватиме в жодному з них).

Таблиця істинності імплікації

А В А->В

і і і

і X X

X і і

X X і

Імплікація є хибною лише тоді, коли антецедент (перша частина імплікації) є істинним, а консеквент (друга частина імплікації) - хибним. В усіх інших випадках імплікація є істинною.

Наприклад: "Якщо робітник старанно працює, то він своєчасно одержує платню". Це висловлювання буде хибним лише за умови, коли перше судження ("Робітник старанно працює") є істинним, а друге ("Він своєчасно одержує платню") - хибним.

Еквівалентне висловлювання є істинним за умови, коли обидві його складові є одночасно або істинними, або хибними.

Таблиця істинності еквіваленції

А В А<н>В

і і іі X XX і X

X X і

Наприклад: "Якщо ця геометрична фігура - прямокутник, то вона є паралелограмом з прямими кутами". Це висловлювання буде істинним лише за умови, що обидві його частини матимуть однакове логічне значення, тобто будуть або одночасно істинними, або одночасно хибними.

Таблиця істинності заперечення

А А

і X

X і

Заперечення перетворює істинне висловлювання на хибне, а хибне - на істинне. Наприклад:

"Відень - столиця Австрії";

"5x5 = 50".

Вдавшись до операції заперечення, ми перетворимо істинне висловлювання на хибне ("Хибно, що Відень - столиця Австрії), а хибне - в істинне ("Хибно, що 5 х 5 = 50").


21.10.2011

Загрузка...