Негативні екологічні наслідки ядерної енергетики. Реферат
Атомна енергетика - стала технологія. Негативні сторони ядерної енергетики
Атомна енергетика - стала технологія
А чому, власне, атомна? Нам що, мало чорнобильської трагедії? Приблизно так багато хто відреагує на заголовок цієї статті. Давайте, однак, відкинемо емоції і подивимося на енергетику через призму концепції сталого розвитку. У 1987 році Комісія Брундтланд дала загальноприйняте на сьогодні визначення, сформулювавши сталий розвиток як такий, що "задовольняє потреби і сподівання теперішнього покоління та не наражає на небезпеку здатність майбутніх поколінь задовольняти свої потреби".
Згідно з цим принципом при оцінці сталості енерговиробництва необхідно враховувати такі фактори:
- доступність і ефективність палива;
- землекористування;
- екологічні наслідки розміщення відходів;
- можливості повторного енергетичного циклу;
- доступність і конкурентоспроможність, включаючи сюди зовнішні та соціальні витрати;
- кліматичні зміни.
Подивимось, чи враховує ці фактори атомна енергетика.
Доступність і ефективність палива. Основа ядерного палива - уран, який, крім атомної енергетики, не має іншого конструктивного застосування. Природно-біологічні процеси спираються на кисень, водень, вуглець та азот. Використання урану не втручається до жодного з них і, таким чином, залишає цінні ресурси для інших застосувань.
Україна має власні поклади урану. Також уранові родовища є в багатьох політично стабільних країнах. Величезна кількість урану міститься у морській воді. За оцінками фахівців, його світових запасів вистачить на декілька тисячоліть.
Вид палива | Дерево | Вугілля | Нафта | Уран |
Енергія, отримувана від одного кілограма палива | 1 кВтґг | 3 кВтґг | 4 кВтґг | 50 000 кВтґг |
Землекористування. Україна має високорозвинуте сільське господарство, а тому питання відчуження ґрунтів під промислові об'єкти є вельми гострим. З наведеної на наступній сторінці таблиці видно, що АЕС вимагають найменшої площі у порівнянні з іншими електростанціями. Треба також зважати на те, що сонячна та вітрова енергії можуть з максимальною ефективністю використовуватися тільки у місцях із сприятливими природними умовами (в інших місцях потрібні великі вкладення у підтримуючі виробничі потужності).
У нашій країні такі умови є лише у південних областях (Миколаївська, Херсонська, Одеська) та у Криму. Використання біомаси для широкомасштабного виробництва енергії можливе тільки у малонаселених країнах із сприятливими кліматичними умовами. Клімат у нас добрий, але, спрямовуючи свою політику землекористування переважно на виробництво продуктів харчування, Україна не може собі дозволити відводити великі площі для вирощування енергопостачальної біомаси.
Тип електростанції | АЕС | Сонячна | Вітрова | З використанням біомаси |
Площа відчужуваних земель для 1000-мегаватної станції | 1-4 км2 | 20-50 км2 | 50-150 км2 | 4000-6000 км2 |
Екологічні наслідки розміщення відходів. Технологічні відходи електростанцій або упаковують у контейнери, або "розсіюють". Досить малі за об'ємами відходи ядерної енергетики ніколи не викидали в повітря, у тепловій же енергетиці велика частина відходів розпорошується в атмосфері. При цьому оксиди сірки й азоту з'єднуються з атмосферною вологою і спричинюють кислотні дощі; вуглекислий газ сьогодні визнаний головною складовою парникових газів; а важкі метали і арсен (миш'як) осідають на ґрунт.
Усі ці шкідливі речовини ми вдихаємо, споживаємо їх разом з овочами, годуємо забрудненим сіном домашніх тварин, отруюючи їхнє молоко і м'ясо. Окрім цього, треба пам'ятати, що тоді як рівень радіації з часом понижується і врешті-решт зникає зовсім, токсичні матеріали (важкі метали) існують вічно.
Тип електростанції | АЕС | Вугільна* |
Об'єм відходів 1000-мегаватної електростанції за рік | 20 тонн відпрацьованого палива | 900 тонн SO2 4500 тонн NОx ** 6,5 млн тонн CO2 400 тонн важких металів (включаючи ртуть) і небезпечних елементів (включаючи арсен) |
Тут наводяться показники для найчистішої на сьогодні вугільної технології. Але велика частина вугільних електростанцій і досі працює за "дідівською" технологією, часто без елементарних пиловловлювачів. Маються на увазі різні оксиди азоту.
Кліматичні зміни. Зростання СO2 в атмосфері, пов'язане з людською діяльністю, на 75% викликане спаленням органічного палива, а значна частина решти 25% - масштабним зменшенням площі лісів. На сьогодні лише ядерна та гідроенергетика є серйозними джерелами безвуглецевого та економічного виробництва енергії. В той час, як росте наукове розуміння процесів глобального потепління, треба все більше спиратися на джерела енергії, що не викидають до атмосфери парникових газів - такі як поновлювані джерела та атомна енергія.
Тип електростанції | АЕС* | Газ | Нафта | Вугілля |
Викиди вуглекислого газу при виробництві 1 млн кВтґг | 1 тонна | 360-400 тонн | 700-800 тонн | 850 тонн |
Тут ураховується повний паливний цикл, у тому числі автомобільні перевезення палива й устаткування.
Конкурентоспроможність. При економічній оцінці будь-якої технології енерговиробництва необхідно враховувати повні зовнішні та соціальні витрати, зокрема екологічні ефекти для паливного циклу, вплив на суспільство (в т. ч. на зайнятість, здоров'я тощо) у локальному, регіональному та глобальному вимірах. Широкомасштабний проект ExtrnE, здійснений Європейською комісією спільно з Департаментом Енергії США, вивчав зовнішні фактори для повних енергетичних циклів (див. таблицю на наступній сторінці).
Експлуатаційні та фінансові витрати для різних технологій залежать у різних країнах від місцевих умов та прийнятих облікових ставок. Зовнішні витрати в ядерній енергетиці покривають потенційні витрати у випадку великих аварій, при тому імовірність таких аварій не є великою.
Якщо враховувати лише експлуатаційні та фінансові витрати, то найдешевшими є ядерна енергія та природний газ. Якщо брати до уваги ще й зовнішні витрати, то найпривабливішою стає ядерна енергія.
Оцінки зовнішньої вартості емісії СО2 (ефект кліматичних змін) не є усталеними й варіюються від 10 до 25 євро на тонну вугілля. Якщо прийняти цю вартість як 15 євро за тонну, то це дасть внесок у зовнішню вартість для вугілля 0,5 цента євро за кВтґг, а для природного газу - 0,3 цента. Якщо ж брати більш високу вартість, то ці числа дуже помітно збільшаться. Це робить ядерну енергію найбільш економічно вигідною альтернативою у випадку врахування всіх витрат.
Повна вартість виробництва електроенергії у центах євро за кВтґг
Технологія | Зовнішні витрати | Фінансові витрати | Загалом |
Вугілля | 2,0 | 5,0 | 7,0 |
Нафта | 1,6 | 4,5 | 6,0 |
Газ | 0,36 | 3,5 | 3,9 |
Вітер | 0,22 | 6,0 | 6,2 |
Гідроенергія | 0,22 | 4,5 | 4,7 |
Ядерна енергія | 0,04 | 3,5 | 3,5 |
Трохи теорії
Уран - дуже поширений хімічний елемент на Землі. Його вміст у земній корі становить у середньому 4·10-6 г/г породи, у морській воді - 1,3·10-6 г/л. Природний уран складається з трьох ізотопів: 233U, 235U та 238U. При цьому вміст ізотопів дуже різний: на 140 частин 238U припадає одна частина 235U і незначна кількість 233U. При опроміненні нейтронами ізотопи виявляють себе по-різному.
Так, при поглинанні нейтрону ядро 235U переходить у нестабільний стан і розпадається на два осколки з виділенням енергії та випусканням т. зв. вторинних нейтронів. Якщо нейтрон знову потрапляє в ядро 235U, то відбувається ще одне ділення. Якщо нейтрон потрапляє в ядро 238U, то відбувається інша реакція: новоутворене ядро 239U випускає b-частку та перетворюється на нептуній (239Np), який за наступного b-розпаду перетворюється на плутоній (239Pu). Плутоній є ядерним паливом і здатний ділитися та перетворюватися під дією нейтронів на важчі ізотопи:
- 30% 240Pu + n > 241Pu.
- 239Pu + n.
- 70% осколки (продукти ділення).
Так само як і 235U, 233U теж є матеріалом, який ділиться і розпадається при поглиненні нейтрону. Ресурси 233U у природі вельми малі, отож його напрацьовують у ядерних реакторах з торію (Th), вміст якого у земній корі - близько 12·10-6 г/г породи - значно перевищує вміст урану. Щоправда, в океанічній воді торію міститься лише близько (1-2) ·10-9 г/л - приблизно в тисячу разів менше, ніж урану.
Однак у процесі вироблення 233U утворюються домішки баластних ізотопів 232U та 234U, які не діляться. Ізотоп 232U має період піврозпаду 72 роки й утворюється за кількома ядерними реакціями при опроміненні нейтронами природного торію; його присутність погіршує радіаційну обстановку, бо його продукти є a-, b- і g- активними. Тому у порівнянні з 235U паливо на основі 233U вимагає акуратнішого поводження.
Щоб проникнути в ядро 238U і викликати його перетворення на 239U, потрібні швидкі, а щоб викликати ділення 235U - повільні нейтрони. Реактори, в яких основну роботу здійснюють швидкі нейтрони, називаються швидкими, а реактори, котрі працюють на повільних нейтронах, - тепловими. У якості сповільнювача нейтронів у теплових реакторах використовуються графіт, вода або важка вода. Звідси й назви - уран-графітові, легководні, важководні реактори.
У процесі роботи в паливі утворюються довгоживучі радіонукліди: америцій (Am), кюрій (Cm), нептуній (Np), технецій-99 (99Tc) та йод-129 (129I). На сьогодні розроблені і випробувані технології, завдяки яким довгоживучі радіонукліди (з періодом піврозпаду в десятки й сотні тисяч років) вилучаються з відпрацьованого ядерного палива і піддаються трансмутації у швидких реакторах.
У такому випадку замкнений ядерно-паливний цикл стає екологічно прийнятним, бо вимагає контролю за збереженням вилучених високоактивних відходів (у тому числі стронція-90 (90Sr) і цезія-137 (137Cs)) протягом лише 100-200 років. Після падіння активності ці відходи заховуються з дотриманням принципу радіаційно-міграційної еквівалентності (згідно з цим принципом, разом з відходами у земних глибинах ховається така ж кількість радіонуклідів, як і в добутому природному урані).
Негативні сторони ядерної енергетики
Однак у сучасної атомної енергетики є й істотні недоліки. Вона дає значно менше відходів, ніж інші енергогенеруючі технології (а потім ще й ізолює їх), але відходи все ж такі існують. Безпека поховання великої кількості радіоактивних відходів (РАВ) на десятки і сотні тисяч років викликає сумнів через надійність таких довготривалих фізично-геологічних прогнозів. Невідомо також, яку роль ці штучні поклади небезпечних речовин відіграють у життєдіяльницьких процесах наступних земних цивілізацій...
Більшість АЕС у світі використовують теплові легководні реактори (LWR). До цього класу належать усі нині діючі українські енергоблоки. LWR вимагають збагаченого урану, що зумовлює залежність неядерних країн[6] від постачальників ядерного палива. Тому деякі держави (зокрема Румунія) будують важководні реактори (HWR), де використовується паливо з природного (незбагаченого) урану. Однак глибина вигоряння палива у HWR у 4-6 разів менша, ніж у LWR, а це збільшує об'єми відпрацьованого (опроміненого) ядерного палива (ОЯП) та зумовлює відповідну потребу у місткіших сховищах.
Далі: існуючі на сьогодні технології переробки ОЯП передбачають вилучення з нього плутонію, а створення власних збагачувальних комбінатів і потужностей для переробки ОЯП у неядерних країнах дає їм можливість напрацьовувати збройовий уран і плутоній на основі цілком легальних каналів атомної енергетики.
Ще одним недоліком LWR є те, що в якості палива в них використовується 235U, а його запасів у розвіданих на сьогодні родовищах вистачить лише на 50-100 років. Тому треба ширше запроваджувати в енергогенеруючі процеси 238U, запасів якого вистачить на кілька тисячоліть.
За всю історію атомної енергетики світу були дві аварії-катастрофи: Віндскейл (7 жовтня 1957 р.) і Чорнобиль (26 квітня 1986 р.). Першу з них фактично вдалося "зам'яти", друга ж завдала величезного удару по самій ідеї "мирного атома". Головним психологічним наслідком Чорнобиля стала масова радіофобія, коли все, пов'язане з ядерною енергетикою почало сприйматися некритично, різко негативно. Доходило до "чорного" комізму. Так, через рік після чорнобильської аварії лікарі у Німеччині повідомляли про серйозні випадки фізичного виснаження людей, котрі харчувалися тільки консервами з датою виготовлення до 26 квітня 1986 р.
10.07.2011